Role of phospholipase C-beta in the modulation of epithelial tight junction permeability.
نویسندگان
چکیده
The results presented in this study establish an association between phospholipase C-beta (PLC-beta) and tight junction permeability across Madin-Darby canine kidney (MDCK) cell monolayers, an in vitro model for epithelial tissue. These results further show that PLC-beta modulates tight junction permeability by affecting actin filament organization. Hexadecylphosphocholine (HPC) inhibited PLC-beta and increased tight junction permeability in MDCK cells. Interestingly, the analogs of HPC, a series of alkylphosphocholines containing various lengths of linear alkyl chains, inhibited PLC-beta and increased tight junction permeability with a wide range of potency. The potency of alkylphosphocholines as enhancers of tight junction permeability significantly correlated (p < 0.05) with their potency as PLC-beta inhibitors. U73122, a steroid derivative that is structurally unrelated to alkylphosphocholines, inhibited PLC-beta and increased tight junction permeability with potencies that fit into the correlation observed for the alkylphosphocholine series. U73122 and HPC induced disorganization of actin filaments in MDCK cell monolayers. The potencies to cause disorganization of actin filaments were consistent with the potencies of these agents as inhibitors of PLC-beta and enhancers of tight junction permeability. Furthermore, ATP, an activator of PLC-beta, attenuated U73122-induced increase in tight junction permeability as well as disorganization of actin filaments. These results provide strong evidence that PLC-beta inhibition leads to increased tight junction permeability across MDCK cell monolayers through disorganization of actin filaments.
منابع مشابه
Na,K-ATPase and epithelial tight junctions.
Tight junctions are unique organelles in polarized epithelial and endothelial cells that regulate the flow of solutes and ions across the epithelial barrier. The structure and functions of tight junctions are regulated by a wide variety of signaling and molecular mechanisms. Several recent studies in mammals, drosophila, and zebrafish reported a new role for Na,K-ATPase, a well-studied ion tran...
متن کاملRole for TGF-beta in cyclosporine-induced modulation of renal epithelial barrier function.
It was previously shown that cyclosporine A (CsA) increases transepithelial resistance in MDCK cells. Activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) cascade seems to be pivotal to the CsA-induced increase in transepithelial electrical resistance (TER). This study examined the role played by TGF-beta in mediating the CsA-induced activ...
متن کاملAbsorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells.
Medium chain fatty acids (MCFAs) are used to enhance the permeability of mucosal tissues to hydrophilic drugs, but their mechanism of action is largely unknown. In this study, the absorption-enhancing effects of the sodium salts of two MCFAs, capric acid (C10) and lauric acid (C12), were studied in monolayers of human intestinal epithelial Caco-2 cells. Both MCFAs induced a rapid increase in ep...
متن کاملMechanism of cytokine modulation of epithelial tight junction barrier.
Cytokines play a crucial role in the modulation of inflammatory response in the gastrointestinal tract. Pro-inflammatory cytokines including tumor necrosis factor-alpha, interferon-gamma, interleukin-1beta?IL-1beta?, and interleukin-12 are essential in mediating the inflammatory response, while anti-inflammatory cytokines including interleukin-10 and transforming growth factor-beta are importan...
متن کاملProtein kinase C activation leads to dephosphorylation of occludin and tight junction permeability increase in LLC-PK1 epithelial cell sheets.
Activation of protein kinase C by exposure of LLC-PK1 renal epithelial cells to 10(-7) M TPA, a tumor promoting phorbol ester, results in a rapid and sustained increase in paracellular permeability as evidenced by a decrease in transepithelial electrical resistance. Occludin, the first identified transmembrane protein to be localized to the tight junction of both epithelial and endothelial cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 304 2 شماره
صفحات -
تاریخ انتشار 2003